metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic3.1D4, C23.11D6, D6⋊C4⋊6C2, (C2×C4).8D6, C22⋊C4⋊5S3, C6.21(C2×D4), C2.10(S3×D4), (C2×Dic6)⋊3C2, C3⋊2(C4.4D4), (C4×Dic3)⋊12C2, C6.10(C4○D4), C6.D4⋊5C2, (C2×C6).26C23, C2.12(C4○D12), C2.9(D4⋊2S3), (C2×C12).54C22, (C22×S3).4C22, (C22×C6).15C22, C22.44(C22×S3), (C2×Dic3).27C22, (C3×C22⋊C4)⋊7C2, (C2×C3⋊D4).4C2, SmallGroup(96,92)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.11D6
G = < a,b,c,d,e | a2=b2=c2=1, d6=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd5 >
Subgroups: 186 in 76 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C2×D4, C2×Q8, Dic6, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C4.4D4, C4×Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, C2×C3⋊D4, C23.11D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4.4D4, C4○D12, S3×D4, D4⋊2S3, C23.11D6
Character table of C23.11D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 4 | 12 | 2 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | complex lifted from C4○D4 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√-3 | √-3 | -√3 | √3 | i | -i | complex lifted from C4○D12 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √-3 | -√-3 | √3 | -√3 | i | -i | complex lifted from C4○D12 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√-3 | √-3 | √3 | -√3 | -i | i | complex lifted from C4○D12 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √-3 | -√-3 | -√3 | √3 | -i | i | complex lifted from C4○D12 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 13)(2 28)(3 15)(4 30)(5 17)(6 32)(7 19)(8 34)(9 21)(10 36)(11 23)(12 26)(14 44)(16 46)(18 48)(20 38)(22 40)(24 42)(25 41)(27 43)(29 45)(31 47)(33 37)(35 39)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 25)(24 26)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6 37 42)(2 41 38 5)(3 4 39 40)(7 12 43 48)(8 47 44 11)(9 10 45 46)(13 26 33 18)(14 17 34 25)(15 36 35 16)(19 32 27 24)(20 23 28 31)(21 30 29 22)
G:=sub<Sym(48)| (1,13)(2,28)(3,15)(4,30)(5,17)(6,32)(7,19)(8,34)(9,21)(10,36)(11,23)(12,26)(14,44)(16,46)(18,48)(20,38)(22,40)(24,42)(25,41)(27,43)(29,45)(31,47)(33,37)(35,39), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,12,43,48)(8,47,44,11)(9,10,45,46)(13,26,33,18)(14,17,34,25)(15,36,35,16)(19,32,27,24)(20,23,28,31)(21,30,29,22)>;
G:=Group( (1,13)(2,28)(3,15)(4,30)(5,17)(6,32)(7,19)(8,34)(9,21)(10,36)(11,23)(12,26)(14,44)(16,46)(18,48)(20,38)(22,40)(24,42)(25,41)(27,43)(29,45)(31,47)(33,37)(35,39), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,12,43,48)(8,47,44,11)(9,10,45,46)(13,26,33,18)(14,17,34,25)(15,36,35,16)(19,32,27,24)(20,23,28,31)(21,30,29,22) );
G=PermutationGroup([[(1,13),(2,28),(3,15),(4,30),(5,17),(6,32),(7,19),(8,34),(9,21),(10,36),(11,23),(12,26),(14,44),(16,46),(18,48),(20,38),(22,40),(24,42),(25,41),(27,43),(29,45),(31,47),(33,37),(35,39)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,25),(24,26)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6,37,42),(2,41,38,5),(3,4,39,40),(7,12,43,48),(8,47,44,11),(9,10,45,46),(13,26,33,18),(14,17,34,25),(15,36,35,16),(19,32,27,24),(20,23,28,31),(21,30,29,22)]])
C23.11D6 is a maximal subgroup of
C24.38D6 C24.41D6 C24.42D6 C42.93D6 C42.97D6 C42.98D6 C42.99D6 C42.102D6 C42.228D6 Dic6⋊23D4 C42⋊18D6 C42.114D6 C42⋊19D6 C42.115D6 C42.117D6 C24.44D6 C24.45D6 C24.46D6 C24⋊9D6 C12⋊(C4○D4) Dic6⋊19D4 C6.382+ 1+4 C6.402+ 1+4 C6.422+ 1+4 C6.452+ 1+4 C6.462+ 1+4 C6.492+ 1+4 C6.162- 1+4 Dic6⋊22D4 C6.222- 1+4 C6.232- 1+4 C6.242- 1+4 C6.252- 1+4 C6.592+ 1+4 C6.792- 1+4 C4⋊C4.197D6 C6.1212+ 1+4 C6.612+ 1+4 C6.1222+ 1+4 C6.652+ 1+4 C6.672+ 1+4 C6.692+ 1+4 C42.137D6 C42.138D6 S3×C4.4D4 Dic6⋊10D4 C42.143D6 C42.144D6 C42⋊24D6 C42.160D6 C42⋊25D6 C42⋊26D6 C42.189D6 C42.164D6 C42.165D6 Dic9.D4 Dic3.D12 C62.77C23 C62.83C23 C62.85C23 C62.95C23 C62.101C23 C62.229C23 Dic3.D20 (C2×Dic6)⋊D5 Dic15.10D4 Dic15.31D4 C23.D5⋊S3 Dic15.19D4 C23.11D30
C23.11D6 is a maximal quotient of
(C2×C12)⋊Q8 C3⋊(C42⋊8C4) (C2×Dic3).9D4 (C2×C4).Dic6 D6⋊C4⋊5C4 D6⋊C4⋊3C4 (C22×S3)⋊Q8 C6.(C4⋊D4) Dic3.SD16 C4⋊C4.D6 C12⋊Q8⋊C2 (C2×C8).200D6 Dic3.1Q16 (C2×C8).D6 (C2×Q8).36D6 Q8⋊C4⋊S3 C24.14D6 C23⋊2Dic6 C24.19D6 C24.20D6 C24.24D6 C24.25D6 C24.27D6 Dic9.D4 Dic3.D12 C62.77C23 C62.83C23 C62.85C23 C62.95C23 C62.101C23 C62.229C23 Dic3.D20 (C2×Dic6)⋊D5 Dic15.10D4 Dic15.31D4 C23.D5⋊S3 Dic15.19D4 C23.11D30
Matrix representation of C23.11D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 11 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 5 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,11,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[1,0,0,0,0,0,1,12,0,0,0,0,0,0,5,5,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,12,0] >;
C23.11D6 in GAP, Magma, Sage, TeX
C_2^3._{11}D_6
% in TeX
G:=Group("C2^3.11D6");
// GroupNames label
G:=SmallGroup(96,92);
// by ID
G=gap.SmallGroup(96,92);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,55,506,188,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^6=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^5>;
// generators/relations
Export